Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization

نویسندگان

  • Steven J. Benson
  • Yinyu Ye
  • Xiong Zhang
چکیده

We present a dual-scaling interior-point algorithm and show how it exploits the structure and sparsity of some large scale problems. We solve the positive semideenite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the rst computational results of interior-point algorithms for approximating the maximum cut semideenite programs with dimension up-to 3000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Primal-dual Interior-point Methods for Semidefinite Programs B-415 Parallel Primal-dual Interior-point Methods for Semidefinite Programs

The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our two software packages S...

متن کامل

Solving a class of semidefinite programs via nonlinear programming

In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefinite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of constraints by an order of magnitude. The class of transformable problems includes instanc...

متن کامل

Sdpa Project : Solving Large-scale Semidefinite Programs

The Semidefinite Program (SDP) has recently attracted much attention of researchers in various fields for the following reasons: (i) It has been intensively studied in both theoretical and numerical aspects. Especially the primal-dual interior-point method is known as a powerful tool for solving large-scale SDPs with accuracy. (ii) Many practical problems in various fields such as combinatorial...

متن کامل

Approximating Semidefinite Packing Programs

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm exploits the struc...

متن کامل

Correlative Sparsity in Primal-dual Interior-point Methods for Lp, Sdp and Socp B-434 Correlative Sparsity in Primal-dual Interior-point Methods for Lp, Sdp and Socp

Exploiting sparsity has been a key issue in solving large-scale optimization problems. The most time-consuming part of primal-dual interior-point methods for linear programs, secondorder cone programs, and semidefinite programs is solving the Schur complement equation at each iteration, usually by the Cholesky factorization. The computational efficiency is greatly affected by the sparsity of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000